BEASY Software and Services



The two main causes of railway replacement are wear and rolling contact fatigue. Rolling contact fatigue has been a critical problem on UK railways. This paper describes recent developments in the modelling of cracks in rails, which incorporates in the model the contact between the crack faces during calculation of the Stress Intensity Factors (SIFs). This data is then combined with the SIFs caused by contact loading to provide a more realistic simulation of the crack growth. The way the methodology can be applied is described, for example using point loads to represent non-conforming contact to obtain the interaction between the wheel and the rail. The process of the wheel rolling over the crack can be modelled by moving the so called ‘contact patch’ along the rail. Various conditions can be applied to the crack, including frictionless contact between opposing surfaces, or frictional contact. In addition, pressure can be applied to the crack surfaces to take into account the water trapped inside the crack as the wheel rolls over. An example is given at the end of the paper to illustrate the advantages of the improved model.

Keywords: rails, rolling contact fatigue, contact, crack growth, boundary element method (BEM).

To get the full publication please Open the Publication Below

Open Here

Request Information

Follow Us!

Newsletter Sign-up

Areas of Interest

Please note that by submitting this form you are giving us permission to store the details you have entered above in our database system.  We will use this data to add you to our mailing list to receive the monthly BEASY e-newsletters you have selected. You can remove yourself from the e-newsletter mailing list at anytime by choosing the opt-out feature on the e-newsletter. We may also send you literature about BEASY via postal mailings and any other BEASY information and announcements which we think you will find of interest. We will not pass your details on to any 3rd party organisations.