Influence of Anode Location and Quantity for the Reduction of Underwater Electric Fields under Cathodic Protection
Y.-S. Kima, S.K. Leeb, J.-G. Kima,
School of Advanced Materials Engineering, Sungkyunkwan University and The 6th Research and Development Institute, Agency for Defense Development,Republic of Korea Published in Ocean Engineering 163 (2018) 476–482
Electric fields form around a ship due to current flow from cathodic protection (CP) systems, such as impressed current cathodic protection (ICCP) and sacrificial anode cathodic protection (SACP) Also, underwater electrical potentials (UEP), which can generate underwater electric signatures, may form even in the absence of CP systems due to galvanic corrosion between the hull (steel) and propeller (nickel aluminum bronze, NAB). A steady current flow around the hull of a ship can create an underwater electric field. Modern underwater mines are attuned to these electric field signatures and use them to detect and classify passing vessels. Thus, diminishing underwater electric fields is required to increase survivability.
|
![]() |
To investigate the effect of anode location and quantities on the underwater electric fields, a number of simulations were performed to determine the design which minimised the electric field while maintaining protection of the vessel.
For further information on Cathodic Protection and Underwater Electric and Magnetic Signature Modelling
please contact us