BEASY
Software and Services

Fracture Simulation newsletter

BEASY Fracture Newsletter

BEASY will be again attending the Aircraft Airworthiness & Sustainability Conference where we will be presenting our fracture mechanics & corrosion risk assessment simulation software and services for aerospace structures. The conference will be held in Washington DC from April 22-26, 2019. In addition to presenting BEASYs comprehensive capabilities for crack growth assessment and simulation BEASY will be presenting new tools and technologies.

We welcome you to come and visit us to find out more about the capabilities of BEASY simulation products, or how BEASY modelling services can provide the solutions you need. Alternatively to make an appointment to meet Tom Curtin (Booth 303) at the conference, or to obtain further information, please contact us.
To obtain further information or arrange to meet with Tom, please contact us

NEW PRODUCTS & SERVICES TO BE PRESENTED AT AA&S 2019

 BEASY Model Cutting Tool

The BEASY model cutting tool is an "add on" feature to further simplify the creation of BEASY fracture and crack growth simulation models from FEM models such as NASTRAN, ABAQUS, ANSYS, PATRAN etc

 

 


BEASY Fracture Assessment Tool

BEASY Fracture Assessment Tool (BEASY FASST) can be used to quickly assess the impact of a crack on the structural integrity of a structure. The tool can be used with FEM or BEASY models to predict how stress the intensity factor (SIF) varies with crack size for a crack located at any position on the model. This can be used as a fast assessment tool before a full scale simulation is performed.

 

BEASY POLCURVEX

BEASY POLCURVEX software is used by design engineers to quickly assess the corrosion risk of material combinations exposed to aqueous environments.

To obtain further information, please contact us


BEASY Polarisation & Corrosion Rate Prediction

BEASY POLCURVEX software is used by design engineers to quickly assess the corrosion risk of material combinations exposed to aqueous environments. Galvanic corrosion is one of the primary, and most costly, corrosion mechanisms observed when different metals and finishes are coupled. BEASY POLCURVEX provides a more accurate, laboratory validated, method to predict corrosion rates based on the identification of crossing points for material polarization curves.
Galvanic corrosion is commonly assessed by comparing differences in metal potential (e.g. galvanic series in seawater table) with higher corrosion risk being associated with larger differences in metal potential. However recent research results obtained during development of the revised military standard, MIL-STD-889C suggests that potential differences do not fully account for the corrosion kinetics and can lead to wrong material compatibility decisions.
Given the high cost of corrosion maintenance many companies are searching for corrosion modeling tools to support the paradigm shift from “Find & Fix” to “Predict & Prevent/Manage”. The BEASY POLCURVEX software provides critical information to designers, focused on metal compatibility and coating performance of new designs and retrofits and maintenance engineers concerned with scheduling inspections to look for corrosion.

To obtain a brief overview of the product Click Here
To obtain further information, please contact us

BEASY will be again attending the Aircraft Airworthiness & Sustainability Conference where we will be presenting our corrosion and fracture simulation services and software and services for aerospace structures.

The conference will be held in Jacksonville Florida from April 23-26, 2018.

We welcome you to come and visit our booth (No 210) to find out more about the capabilities of BEASY simulation products, or how BEASY modelling services can provide the solutions you need. Alternatively to make an appointment to meet Tom Curtin at the conference, or to obtain further information, please contact us

An interesting paper was presented at the recent Aircraft Structural Integrity Conference held in Jacksonville in November 2017 by Mark Ryan of Lockheed Martin.

Fracture Mechanics and Risk Methods Used to Analyze the F-16 Wing Carry Through Bulkhead (WCTB) Upper End Pad Radius



The presentation describes a study of cracking found in a bulkhead structure. BEASY simulations were used to predict SIFs and crack shape evolution.
Models were typically created from existing F-16 ABAQUS finite element models using the BEASY Abaqus Interface.

For further information please contact us

Paper Source

BEASY staff attended the 2016 AA&S Conference in Grapevine, TX, and met with many customers to discuss their applications and developments underway at BEASY. We had a lot of new interest at our booth this year in the areas of fatigue crack growth in residual stress fields and the modelling of corrosion related damage.

Dr Sharon Mellings from BEASY also jointly authored a paper with Keith Hitchman and Joy Ransom of FTI on some recent work on the prediction of Crack Propagation through Cold Expansion Residual Stress Fields.

 

Analytical Verification of Crack Propagation through Cold Expansion Residual Stress Fields

Sharon Mellings, John Baynham - CM BEASY Ltd, Keith Hitchman, Joy Ransom - FTI


Figure 1 High Load Transfer Specimen with Split Sleeve Cold Expansion (section view)

Split-Sleeve Cold Expansion (SsCx) of holes is a widely adopted method to enhance the fatigue life of such holes in metallic structures by the generation of deep residual stress fields, the efficacy of which has been well documented in numerous specimen, component, and full scale physical test programs.

While physical tests will always be the "gold-standard" for confirmation of the fatigue life improvement realized by using SsCx, such tests are costly and time consuming. Computational resources improve in efficiency and cost year-over-year, and have become a widely used tool in solving the unique analytical problems posed by fracture mechanics within a domain containing residual stresses. Typically, commercial mature non-linear finite element (FE) computational tools are utilised to determine the residual stress field, and those localised fields are then combined with the far field cyclic stress using superposition principles. More advanced fracture mechanics codes have developed a novel capability to incorporate this complex loading in a fracture analysis.

BEASY was used to perform fatigue crack growth simulations, applying boundary conditions for both the far field cyclic loading and the residual stress field. The automatic crack growth process uses optimised adaptive surface meshing routines around the crack and breakout edges which results in a reliable simulation that accumulates incremental growth vectors to predict the position of successive crack fronts. The software creates the surface of the new grown crack, automatically repeating the process until a defined growth criterion is satisfied.

The software provides a realistic crack growth simulation, including the crack path and associated number of load cycles required to advance the crack at each increment, incorporating the effects of the local residual stress field.

This presentation describes the use of BEASY to provide analytical estimates of crack propagation rates through the residual stress field surrounding an open hole that has been cold expanded using the SsCx process. The effect of the SsCx process in 2000-series aluminium was modelled by FTI using non-linear finite element analysis. The resultant residual stress field was then used to define appropriate crack-face tractions for a BEASY crack propagation analysis under constant amplitude loading.


Figure 2 Selected Test Case

The presentation discusses the following results:

* Residual stress field prediction, including likely crack initiation location
* Stress intensity predictions along the crack front at various crack lengths
* Predicted crack front shape throughout crack growth history
* Comparison of predicted crack growth rate and crack growth evolution with available physical test data

Click here to download the presentation

For further information, please contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.

BEASY is pleased to announce the release of a new versionof the BEASY Fatigue & Crack Growth Software.

The primary benefits of this new release are that it provides a further enhancement of the software's automatic crack growth capabilities and major improvements in the over simulation times.

For typical models, the remeshing time has been reduced by between 40% and 80%.

June 16 figure 2 x 1This release incorporates a significant improvement to the adaptive meshing routines. As a result cracks are inserted into models more quickly, even in areas of complex geometry. The crack surface mesh quality is also improved with a continuous quadrilateral mesh now created along the entire crack front. This further improves the accuracy of the SIF solution and provides greater stability when running fatigue crack growth simulations. 

BEASY staff attended the 2015 AA&S Conference in Baltimore in April and met with many customers to discuss their applications and update them about projects underway at BEASY.  

We had a lot of new interest at our booth this year in the areas of fatigue crack growth in residual stress fields, fracture behaviour of composite plates as well as the modelling of corrosion related damage. There was also considerable interest in the BEASY Corrosion Manager software which is used to predict and simulate galvanic corrosion in structures such as aircraft.

Cold worked hole fracture May 15 edited

Of particular interest was the impact of residual stresses on the crack path and the rate of growth of cracks. The effect on the crack path can be clearly seen in the above figure where the lines show the predicted crack fronts as the crack grows from a hole with, and without, cold working. The red lines show the predicted crack fronts without cold working and the green dotted lines show the predicted crack fronts with cold working. The study clearly indicates the need to include residual stresses in crack growth calculations as otherwise unexpected failure modes can occur, and excessively conservative designs can result.

Please contact us for background papers on some of the topics presented at AA&S 2015, quoting the name(s) of the papers below:

Analysis of Fatigue Crack Growth for CFRP-Strengthened Steel Plates with Longitudinal Weld Attachments

Analysis of CFRP reinforced steel plates

Analysis of fatigue crack growth for welded connections under bending

Calculation of bending fatigue life of thin-rim spur gears

Analysis of fretting fatigue life of dovetail assemblies based on fracture mechanics method

Another area of considerable interest at the AA&S conference was the use of computer simulation to assess the risks associated with corrosion. During the product development process, various design configurations are often exposed to actual environmental conditions for an extended period of time to evaluate corrosion damage in the structural assembly. However, these testing methods require anywhere from several months to several years of exposure time in order to complete. Computer modelling has the potential to significantly shorten, and reduce, the cost of testing by providing a corrosion simulation option that can be used to supplement these long term experimental tests.

Galvanic Stack Up model fracture1 May 15 edited

In the model shown a computer simulation is used to predict the risk and extent of corrosion damage on a test structure.

Newsletter Sign-up

Areas of Interest

Please enter the text in the image.

Please note that by submitting this form you are giving us permission to store the details you have entered above in our database system.  We will use this data to add you to our mailing list to receive the monthly BEASY e-newsletters you have selected. You can remove yourself from the e-newsletter mailing list at anytime by choosing the opt-out feature on the e-newsletter. We may also send you literature about BEASY via postal mailings and any other BEASY information and announcements which we think you will find of interest. We will not pass your details on to any 3rd party organisations.