BEASY Software and Services

Fracture Simulation newsletter

BEASY Fracture Newsletter

BEASY Fracture & Crack Growth 10.0r16 provides a great number of new and advanced features that enable engineers to improve fracture analysis and crack growth simulation and provide deeper design insight.

The new release incorporates improvements and enhancements to the core BEASY Fracture & Crack Growth software, allowing more crack growth simulations to be run automatically (such as analyses where only part of the crack is growing) and reducing the need for user intervention.

Partial crack growth

one of the significant new features is that the crack growth algorithms have been enhanced to enable crack growth simulations to be performed automatically for a much wider range of applications.

The new capability is of particular value where residual stresses exist within the structure. The residual stresses can prevent the crack opening thus reducing the Stress Intensity Factors thereby resulting in slower crack growth. As the residual stresses can vary locally within the structure (particularly if they have been applied as some form of surface treatment) this can result in parts of the crack front growing at very different rates or in some cases not growing at all along part of the crack front.

This development also benefits models where crack growth on part of a crack front slows as it approaches a compressive load region but there is significantly faster growth at other parts of the crack front. This is typically the case when looking at crack growth through a gear tooth for example.

The new capability can also be used when simulating multiple cracks where one crack is growing slowly or not growing at all.

For further Highlights about the new release, please click here, and if you would like to find out more about the new features and capabilities in this latest of the BEASY Fracture & Crack Growth Software, please contact us

 

Airworthiness logo 2014 1

BEASY will be exhibiting at the 2014 Aircraft Airworthiness & Sustainability Conference in Baltimore this April, presenting the latest developments in our Software and Services for Crack Growth Simulation and Corrosion Management in Aircraft Structures.

We welcome you to come and visit us at booth 404 to find out more about the capabilities of BEASY products, or how BEASY can help with your particular application. Alternatively to make an appointment to meet Tom Curtin at the conference, or to obtain further information, please contact us

AirworthinessMain12014BEASY Fatigue & Crack Growth

The BEASY Fatigue and Crack Growth software can be used to perform 3D crack growth simulations to support structural life extension decisions. Sophisticated analysis algorithms have been developed to investigate crack growth behavior in complex loading environments. For example load cases can include residual stresses, fretting fatigue, contact loading and thermal stresses. 

Interfaces are also available to enable BEASY to integrate with MSC PATRAN, NASTRAN, ABAQUS, and ANSYS. 

  

AirworthinessCorrosion12014BEASY Corrosion Manager  

BEASY Corrosion Manager Software enables engineers to quickly assess the risk to components and structures of corrosion and the effectiveness of surface protection systems.

BEASY Corrosion Manager simulations enable engineers to replace the "find it and fix it" approach and replace it with a more fundamental approach based on an understanding of the corrosion process and the ability to predict its behavior.

 

Initial ABAQUS modelA focus of interest was BEASY's Fatigue and Crack Growth software used to perform 3D crack growth simulations to support structural life extension decisions and in particular its integration with Finite Element systems such as ABAQUS, ANSYS, NASTRAN and MSC PATRAN. This was demonstrated in a failure investigation where an ABAQUS stress analysis model was available and BEASY was used to perform the crack growth study to gain an understanding of the failure mode.

In Damage Tolerant Design the assumption that cracks already exist can lead to overly heavy designs without the consideration of surface and near surface stress distributions. Practical experience and accumulated data have shown surface, near surface and sub-surface stresses are very important to the growth of fatigue cracks and need to be considered when predicting how cracks grow.

Request Information

Follow Us!

Newsletter Sign-up

Areas of Interest

Please note that by submitting this form you are giving us permission to store the details you have entered above in our database system.  We will use this data to add you to our mailing list to receive the monthly BEASY e-newsletters you have selected. You can remove yourself from the e-newsletter mailing list at anytime by choosing the opt-out feature on the e-newsletter. We may also send you literature about BEASY via postal mailings and any other BEASY information and announcements which we think you will find of interest. We will not pass your details on to any 3rd party organisations.

To download BEASY documents we require data from you, please fill in the form provided and the material will become available to download