BEASY Software and Services

Corrosion Simulation Newsletter

Corrosion Simulation Newsletter

BEASY once again attended the annual NACE Corrosion Conference, which this year was held between March 26-30, 2017 in New Orleans, Louisiana.

We were active in both the conference programme and exhibit hall showing our modelling services and software to support engineers with responsibility for corrosion aspects related to offshore and onshore structures, and also in the wider manufactured sector (aircraft, vehicles, etc).

Predicting The Impact Of Interference On the Corrosion Control Of Offshore Oil & Gas Assets


Designing and operating cathodic protection (CP) systems to protect oil and gas structures from corrosion in offshore marine environments is a complex task as interference can degrade the protection provided and accelerate anode depletion. Modern developments frequently consist of connected assets like well casings, seabed flow lines, pipelines, well-head structures, risers, and surface vessels such as floating production, storage, and offloading (FPSO) units.

Although these structures are often separated by large distances, the relatively low resistance of seawater means they pose the potential to interfere with each other and significantly affect the overall performance of a CP system. Computer modelling technologies provide improved predictions of CP system performance and identify the risks of interference.

Mitigating Pipeline Interference From DC Railways

Mitigating Pipeline Interference From DC Railways Predictive modelling can play a significant role in the design, planning and operation of cathodic protection systems used to protect pipelines. It can also be used to verify the protection provided, inform selection of an optimum design and assess and facilitate assessment and mitigation of interference from third parties such as railways etc.

The problem of stray current interference from railway, metro and tram sources is a growing concern as it may cause pipeline corrosion resulting in environmental pollution, unsafe operations, and reduction of the pipeline service life.

These are just some of the applications we will be discussing and presenting at NACE 2017. Please come and visit us at booth 2027, or if you would like to set up a meeting to discuss any aspect of BEASY's modelling and software services, please contact us

 

BEASY were again at EUROCORR this year which was held in Montpellier, France, and we presented a number of papers on subjects including Internal Cathodic Protection of Offshore Sea Water Pump Caissons, Modelling Cathodic Protection/Prevention of Reinforcement in Concrete, and Using Predicted Corrosion Damage to Determine Stress Concentration, Fracture and Crack Growth. Tim Froome was on hand to discuss both the papers and applications of BEASY modelling.


Seminar Programme China

BEASY in conjunction with Beijing Safetech Pipeline Co., Ltd recently presented a popular series of seminars in China on Cathodic Protection and Interference Modelling

Bob Adey introducing BEASY and a series of
CP Modelling & Interference Case Studies at the seminar in Chengdu

If you are interested in this subject or need help and advice about interference, then please contact us for more information.

 

New Case Studies

BEASY have recently published two new Case Study data sheets.

Case Study: Interference Between A Pipeline & A DC Railway Metro System

Interference Between A Pipeline & A DC Railway Metro System A planned metro line with a car parking yard and ten traction zones is to be constructed. The line will cross an existing oil pipeline within 9m of a traction zone. It will run parallel with the metro car parking yard at a separation of about 40m for several hundred metres. A stray current interference assessment is required to evaluate the interference level and how to mitigate it if an unacceptable interference is found to occur.

A model is used to predict the protection provided by the CP system and the interference between the pipeline and the metro system under different operating conditions

Case Study: HVDC Interference On Pipelines HVDC Interference On Pipelines

A new HVDC transmission line is being planned with a voltage of ±500kV and a distance of 577 km. The distance of one planned electrode from a nearby constructed pipeline is about 9 km. The pipeline is likely susceptible to interference from the HVDC systems. There is a need to assess the interference level and its risk, and the feasibility of mitigation.

A simulation model was used to predict and quantify the interference caused by the system operating under bipolar conditions where the HVDC ground electrodes may pick-up current from the ground or discharge current into the ground. Mitigation measures were also investigated.

To view these and other BEASY corrosion case studies, please visit our website or for further information, please contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.

 

BEASY attended the NACE Corrosion Conference in Vancouver this March where we were active at the exhibition as well as presenting and participating in the technical sessions and exchange groups.

It was great to meet many friends at the conference and discuss how modelling can be used to improve and optimize CP systems and mitigate interference.

At this year's conference there were a number of papers presented by BEASY staff and customers and BEASY CEO Tim Froome also gave a presentation on modelling of well casings at the Technical Exchange Group meeting. Some of the papers presented are described below.


Case Study of an ICCP Design and Installation for Well Casings Using Boundary Elements Software, Evaluating Different Deep Anode Architectures and Interference to Nearby Casings

Norberto Aldo Pesce & Norberto Antonio Pesce, Omnitronic S.A. Héctor C. Albaya Sistemas de Protección Catódica S.A. Guy Bishop & Andrés Peratta CM BEASY Ltd.

Impressed current cathodic protection (ICCP) systems can be used very effectively to achieve appropriate mitigation of well casing corrosion, but it may be difficult and expensive to define the most convenient anode distribution in order to adequately protect the desired casings and not interfere with nearby

Figure 1 Predicted current density on the well casing structures.

Once the system is installed, the cost of redesign may be high if experimental measurements indicate that the required protection is not achieved or that destructive interference is taking place. It is therefore both desirable and cost-effective to establish performance of the ICCP system before it is installed. Such assessment can be achieved through the use of mathematical modelling performed using numerical techniques. Of the available methodologies it is the boundary element method that is applied in this work.

To perform such simulation a model of the well casings is constructed (reflecting the directionally drilled profile) and the multiple anode ground-beds, including the return-path resistances along the cables and well casings. In order to effectively capture the electrical behavior of the currents, the resistivity of the ground through which current passes must be identified. Running alternative scenarios of the models to readily quantify the effects of alternative assumptions, provides valuable understanding to the CP system designer of probable behavior, and contributes to design robustness.

For further information contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.

 

How Interference Can Impact The Life Of CP Systems. An FPSO Case Study

Robert Adey, Cristina Peratta, John Baynham, CM BEASY Ltd

The design rules used to design CP systems in the main do not take into account the interference between the anodes provided to protect a structure or interactions between the structures themselves. CP systems will always interact with each other to some extent when they are in the same electrolyte even when there is no metallic electrical connection and this can radically affect the protection provided to the structure and the life of the CP system.

A case study is presented involving the design of the CP system of an FPSO (Floating production storage and offloading vessel). The aim of the study was to verify the performance of the CP system to ensure that the structure was protected for the design life and the anodes had sufficient capacity. Computer modelling was used to simulate the performance of the CP system which comprised of an ICCP system and sacrificial anodes. The study identified some interesting and unexpected interactions which required the design of the CP system to be modified.

Figure 2 Comparison of the protection potentials on the Moon Pool-Turret-Chain Connectors-Chains
for two different connection resistances at End Of Life


For further information, please contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Interference Between Sacrificial CP Systems In The Marine Environment

John Baynham, Tim Froome CM BEASY Ltd

It is generally accepted that destructive interference can occur between impressed and sacrificial cathodic protection systems, which can result in difficulty with control of the ICCP system, and which can also cause problems with performance of the sacrificial CP system

Less well known is the possibility of interference between multiple sacrificial CP systems. Such interference can occur under a number of different circumstances, and may for example arise when different design approaches are used for sub-structures which are then to be integrated together. Each CP system may be competently designed for stand-alone operation, but when combined together, protection potentials and life of the systems may be affected by interference. Consequences may include early consumption of anodes and more positive potentials towards end of life.

Figure 3 Projected anode life (in years) calculated in year 0 for the 330 anodes


Such effects can readily occur when different types of anode material are used, but may also occur when anodes in both CP systems are made from the same anode material.

This paper shows how mathematical modelling has been used to simulate performance of both stand-alone and integrated sacrificial systems. It goes on to identify interference effects between such systems, and investigates a number of different situations in which destructive interference can occur. Conclusions are reached of practices that can be adopted to avoid such destructive interference.

For further information, please contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.


Using Predicted Corrosion Damage To Determine Stress Concentration, Fracture And Crack Growth

Sharon Mellings, Andres Peratta, John Baynham, Tim Froome CM BEASY Ltd

Structure surfaces damaged by corrosion may develop stress concentrations which lead to initiation of cracks and possible crack growth.

Simulation of the galvanic effects leading to corrosion takes account of the properties of the electrolyte as well as the structural materials, to determine electric fields within the electrolyte, attenuation in the return path, and the surface current densities and potentials. If dissimilar materials are present or a CP system is not adequately designed, areas may exist where anodic current occurs on a structural surface, causing mass loss from the surface. The magnitude of the anodic current density, determined from simulation, can be used to determine surface shape change.

Such shape change generally results in indentations, which act as stress-raisers. Simulation to determine magnitude of the stress concentration can identify likely sites for crack initiation. The possibility of crack growth, and the time taken for the growth, can be determined using fracture and crack growth simulation.

This paper explores the combined use of galvanic simulation and fracture/crack growth simulation.

Figure 4 Predicted geometry changes in the specimen due to corrosion damage

 

For further information, please contact BEASY at This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Dr Andres Peratta presented some recent conceptual work on the application of simulation modelling to predict the corrosion related potentials and electric and magnetic fields on and surrounding naval vessels at the International Conference On Marine Electromagnetics (MARELEC) in Philadelphia, USA. Modelling is used to predict the corrosion related potentials on the vessel itself, and the electric and magnetic fields surrounding the vessel. For naval vessels, modelling can be exploited to not only assess the performance of cathodic protection systems on the vessel (ICCP and sacrificial) but also the corrosion related magnetic fields as they make a significant contribution to the vessel signature.

The paper evaluated the magnetic field caused by return-path current flowing in the hull of a vessel, and compared the electromagnetic fields calculated using different assumptions regarding how the cathodic protection currents flow. The cases assessed included flow along an equivalent horizontal wire, and flow through the vessel skin to selected collection points at which cables return current to the power supply. The effects of different layouts of collection points were investigated to determine the sensitivity of the magnetic field to the layout.

For further information on BEASY Corrosion simulation services and software, please contact us

BEASY attended the NACE Corrosion Conference in Dallas this March where we were active at the exhibition as well as presenting and participating in the technical sessions and exchange groups.

It was great to meet many friends at the conference and discuss how modelling can be used to improve and optimize CP systems as well as providing further confidence in their performance as part of "due diligence" activities.

In addition to the activities by BEASY staff there were papers presented at NACE incorporating BEASY modelling, including Application Of Linear Anodes To Protect Isolated And Unisolated Piping In A Petrochemical Plant by Mobeen Hassan, Sharjah, United Arab Emirates & Stephen Wroe Corrosion Technology Services LLC Sharjah, United Arab Emirates.

The paper describes an application of cathodic protection using linear anodes in a congested petrochemical plant in the Middle East. The initial design of the cathodic protection is discussed along with the problems found due to faulty isolating flanges and loss of current to other structures. Computer modelling of a typical electrically continuous cathode including steel in concrete and earth rods is included to demonstrate the need to consider all components of complex structures. Lessons learnt from this case study are applicable for the application of cathodic protection in plant using distributed anodes.

CTS Mar 15

The results shown below illustrate the effect of adding continuous reinforced concrete paving into the circuit. The dramatic effect is that the pipe potentials are hardly shifted from the natural potential even with the anode operating at 100mA/m.  

CTS 2 Mar 15

 For more information, please contact us

 

 

An interesting article was published in a recent issue of the NACE Materials Performance magazine.

 

Researchers used modelling tools to design effective cathodic protection systems that address challenging seawater conditions and coating damage from ice abrasion.

 

According to researchers Min-Jeong Lee, senior engineer, and Chae-Seon Lim, principal research engineer, both in the Material & Coating Research Department at Samsung Heavy Industries, Co., Ltd, South Korea, the performance of a CP system for a ship's external hull is dependent on several factors, including the geometry of the ship's hull, the resistivity of the surrounding seawater, the chemicals in the seawater, and the degree of coating damage. The ICCP design for many commercial vessels is often based on current density (CD) calculations and the designers' experience rather than an analytical method. For an icebreaker travelling in Arctic conditions, the researchers note, this traditional approach to CP design may not result in an adequate amount of corrosion protection for the hull in this environment.

 

To determine the optimum ICCP design for the external hull of an icebreaker, the researchers explored a modelling approach using computational analysis based on the boundary element method (BEM). Lee comments that modelling tools are often used to design ICCP for stationary offshore structures such as oil and gas production platforms; floating production, storage, and offloading (FPSO) units; and semi-submersibles.

 

Using computational analysis and modelling was successful in determining that an ICCP system design is effective for a vessel exposed to Arctic seawater conditions. Going forward, Lee expects more use of CP modelling when designing ICCP systems for ship hulls, particularly those headed for the Arctic.  

 

For more information, please click here 

Request Information

Follow Us!

Newsletter Sign-up

Areas of Interest

Please note that by submitting this form you are giving us permission to store the details you have entered above in our database system.  We will use this data to add you to our mailing list to receive the monthly BEASY e-newsletters you have selected. You can remove yourself from the e-newsletter mailing list at anytime by choosing the opt-out feature on the e-newsletter. We may also send you literature about BEASY via postal mailings and any other BEASY information and announcements which we think you will find of interest. We will not pass your details on to any 3rd party organisations.

To download BEASY documents we require data from you, please fill in the form provided and the material will become available to download