Abstract
This chapter reviews numerical modelling of magnesium (Mg) galvanic corrosion, in particular, the prediction of the galvanic current density distribution of a typical Mg alloy such as AZ91 in contact with steel in a typical corrosive solution such as 5% naCl. The galvanic current density distribution predicted by boundary elemental modelling was in good agreement with experimental measurements. The galvanic current density distribution caused by the interaction of two independent galvanic couples was equal to the sum of the galvanic current density caused by each individual galvanic couple. However, experimental measurements indicate that the measured corrosion rate was significantly higher than the galvanic corrosion rate, and this was interpreted as self-corrosion of Mg, corresponding to a penetration rate of ~230 mm/yr. However, does the necessity to postulate self-corrosion indicate some fundamental flaw in the methodology? Issues and future research directions are discussed.
Keywords: magnesium alloys, galvanic corrosion, boundary element method.
To get the full publication please Open the Publication Below